Exploring Soil Health Indicators: Yearly
Trends in PLFA Biomass and
Bacteria-to-Fungi Ratios Across Depths in
Regenerative Farming Systems

Linda Figueroa*
Department of Agriculture, California State Univeristy Chico

and
Alex Woodward
Department of Agriculture, California State Univeristy Chico

December 18, 2024

Abstract

This study aims to assess how regenerative agriculture affects PLFA biomass
and fungal-to-bacteria ratios in soil systems by depth yearly. There is an increased
demand for food systems and overwhelming evidence that our current agricultural
practices have devastating environmental effects. Results demonstrate that RA sig-
nificantly enhances microbial biomass compared to conventional methods, with con-
sistently higher biomass across all years. However, both systems experienced declines
in biomass in 2023, with RA showing partial recovery in 2024 while conventional sys-
tems stagnated. Depth-specific analyses revealed significant increases in F:B ratios
at deeper soil layers, though overall trends in F:B ratios fluctuated, with an increase
in 2023 followed by a decline in 2024. These patterns suggest that while RA sup-
ports soil microbial health, broader environmental or systemic pressures, such as
climate variability or soil management practices, may also influence microbial dy-
namics. These findings align with existing literature highlighting the benefits of RA
for soil health and microbial diversity, yet underscore the complexity of soil ecosys-
tems and the need for further research. The work supports the hypothesis that RA
enhances microbial biomass over time and offers valuable insights for sustainable
agricultural policy and practice while emphasizing the necessity of long-term studies
to capture its potential benefits fully.
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1 Introduction

By 2050, the world will need to produce 70% more food to meet the demands of a growing
population, but conventional farming methods may not be up to the task (Hannah et al.,
2020). Practices like plowing and leaving soil bare degrade soil health, reduce biodiversity,
and accelerate climate change, threatening long-term agricultural sustainability (Murphy
et al., 2016). Regenerative agriculture offers a promising alternative, combining age-old
practices like no-tillage and cover cropping to restore soil health and support sustainable

food production (Hermans et al., 2023).

At the heart of regenerative agriculture’s benefits lies its impact on soil microbial communi-
ties, which are key to ecosystem health. Phospholipid Fatty Acid (PLFA) profiles serve as
microbial “fingerprints,” providing insights into microbial diversity and biomass (Steer &
Harris, 2000; Leckie, 2005). Research shows that intensive farming practices often reduce
microbial biomass and skew fungal-to-bacterial (F: B) ratios, favoring bacteria over fungi
and diminishing soil’s carbon storage capacity (Malik et al., 2016). Regenerative practices,
on the other hand, increase organic matter and elevate F: B ratios, fostering healthier

soils that can better support crop production (Willers, Jansen van Rensburg, & Claassens,

2015).

These shifts in microbial dynamics highlight the transformative potential of regenerative
agriculture.By addressing soil degradation and enhancing microbial ecosystems, it paves
the way for a more resilient agricultural future, capable of producing nutritious food while

combating environmental challenges.

As researchers explore regenerative agriculture (RA) to improve soil health, challenges

persist in securing funding for long-term studies that can fully capture its complexity



(Khangura et al., 2023). This funding gap limits our understanding of key indicators like
phospholipid fatty acid (PLFA) profiles, which reveal microbial biomass and structure criti-
cal to evaluating farming practices.Evidence supporting RA’s effectiveness in enhancing soil
health and microbial diversity remains limited, underscoring the need for further research

(Khangura et al., 2023).

Our study aims to address this gap by analyzing PLFA biomass data across years and depths
over time to compare regenerative and conventional practices. By focusing on microbial
structure and fungal-to-bacterial (F: B) ratios, this research will provide insights into how
these farming systems impact soil health and microbial communities. Strengthening the
evidence base for RA can support its adoption as a sustainable solution to improve soil

quality and agricultural resilience.

2 Study Design and Data Collection

This study compared conventional and regenerative farming practices to evaluate the claims
supporting regenerative agriculture. Conventional fields utilized practices such as full tillage
and bare fallow periods, while regenerative fields incorporated no-tillage, cover cropping
(single- and multispecies). Fields were categorized into two treatment types: conventional

and regenerative.

Over three years, annual soil sampling was conducted at each field, with 15 randomly
selected points per field combined into composite samples. Samples were collected at two
depths (04 cm and 4-8 cm), resulting in 30 samples per field. Samples were promptly
stored in coolers and sent to Regen Ag Lab for phospholipid fatty acids (PLFA) analysis

to quantify microbial composition, including fungi and bacteria.



At Regen Ag Lab, PLFA profiles were measured to determine microbial biomass and com-
position, specifically focusing on total living microbial biomass, fungal-to-bacterial biomass
ratio, total fungi, and total bacteria. Data variables also included collection year, research
site location, and sampling depth. Results were documented in Excel for further statisti-
cal evaluation, providing insights into how regenerative practices influence soil health and

microbial diversity.

3 Data Preparation and Statistical Analysis Methods

We used R software to analyze total living microbial biomass, which was log-transformed
to meet the requirements for statistical modeling. Other variables, such as sampling depth
(04 cm and 4-8 cm) and collection year (2022-2024), were treated as categorical variables
to account for time and depth differences. Descriptive statistics and visualizations, like
violin plots, summarized trends and variations in microbial biomass. A multivariable linear
regression model was then used to evaluate how factors like fungal-to-bacterial ratio, total
fungi, total bacteria, depth, and year influenced microbial biomass. Model assumptions for
linearity, normality, and variance were verified, and significant factors were identified to

highlight differences between regenerative and conventional farming,.

To explore changes in fungi and bacteria with soil depth, another model was developed
using fungal quantity, fungal-to-bacterial ratio, year, and depth. Previously, the RAD Lab
used a single depth category (“0-6 cm”), but this was updated to “0-4 cm” and “4-8 ¢cm”
for better precision. Older “0-6 cm” data was reclassified into the new categories. The total
fungal quantity was divided by 100 to simplify interpretation (measured in nanograms per

gram of soil). This model revealed trends in fungal and bacterial dynamics across depths



and years, providing insights into how microbial communities vary in different farming

systems.

4 Results

The graph visualizes the distribution of log-transformed microbial biomass across treatment
types (regenerative and conventional) for each collection year (2022, 2023, 2024). It uses
violin plots to show the density and variability of biomass values within each treatment
type, with additional markers for the mean and box plots for detailed comparison. The

graph is faceted by year, allowing comparisons of treatment effects within each specific

year.
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Figure 1. Effect of agricultural treatment type (Regenerative vs. Conventional) on microbial

biomass across collection years, adjusted for treatment type, p < 0.05.

Regenerative treatments consistently show higher microbial biomass compared to conven-

tional treatments across all years. In 2022, regenerative farming exhibits the highest
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biomass with a relatively narrow range, indicating low variability. Both treatments ex-
perience a decline in 2023, with conventional farming showing a sharper drop. By 2024,
regenerative farming demonstrates a partial recovery, as reflected by an upward shift in
biomass, while conventional farming remains stagnant. The variability in biomass increases

over time, particularly in regenerative treatments, as seen in the broader distribution in

2024.

Table 1: Mean and Standard Deviation of Biomass by Collection Year and Treatment

collection_year treatment mean SD
2022 Regen 8.446976 0.4044310
2022 Conv 8.218864 0.5485161
2023 Regen 7.504302 0.5064431
2023 Conv 7.399912  0.6799865
2024 Regen 8.002866 0.7585431
2024 Conv 7.441762 0.7111841

Regenerative farming consistently maintained higher microbial biomass than conventional
farming across all years. In 2022, the mean log-transformed microbial biomass was 8.4 (SD
= 0.4) for regenerative treatments compared to 8.2 (SD = (.5) for conventional treatments.
Both treatments experienced a significant decline in 2023, with regenerative biomass drop-
ping to 7.5 (SD = 0.5), a 10.7% decrease from 2022, and conventional log biomass falling to
7.4 (SD = 0.7), a 9.8% decrease. By 2024, regenerative farming showed resilience, partially
recovering to a mean biomass of 8.0 (SD = 0.8), representing a 6.7% increase from 2023.
In contrast, conventional farming showed no increase, remaining at 7.4 (SD = 0.7) in both

2023 and 2024. Variability in microbial biomass also increased over time, particularly for
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regenerative farming, with the standard deviation rising from 0.4 in 2022 to 0.8 in 2024.

o
.
.
.
b
444

-9 0.54 ° L I o

ito
o O =
TTe
..
[ |
[ ]
)
[
*
£202

L 15+
N
1.0 S
0.5 M—,—n =
0.0+
0 5 10 15 20 0 5 10 15 20
Total Fungi

Figure 2. Effect of total fungi on the Fungi-to-Bacteria Ratio across soil depths (0-4 cm

vs. 4-8 cm) and collection years (2022, 2023, 2024), p < 0.001.

This facet graph shows how the Fungi-to-Bacteria Ratio changes with Total Fungi at two
soil depths (0-4 cm and 4-8 cm) over three years: 2022, 2023, and 2024. In the 0-4 cm
depth, the ratio of fungi to bacteria increases as total fungi increases in 2022 and 2023, but
by 2024, the trend flattens, showing little change regardless of fungi levels. At the deeper
4-8 cm depth, a similar increasing trend appears in 2022 and 2023, but the data is more
scattered, as shown by the wider gray bands (confidence intervals). By 2024, the trend

stabilizes, with the fungi-to-bacteria ratio remaining relatively flat.

Characteristic Beta 95% CI! p-value

(Intercept) 0.13  0.08, 0.17  <0.001
total fungiperl00 0.04  0.04, 0.056  <0.001

depth



0-4 — —
4-8 0.07 0.04,0.10 <0.001

collection_ year

2022 — —
2023 0.12  0.08,0.17 <0.001
2024 -0.09 -0.12,-0.05 <0.001
Adjusted R? 0.340
No. Obs. 796

ICI = Confidence Interval

Table 2. Impact of total fungi, soil depth, and collection year on Fungi-to-Bacteria Ratios,

adjusted for all variables, p < 0.001.

The regression analysis examining how Fungi-to-Bacteria Ratios are influenced by total
fungi, soil depth, and collection year. The intercept value is 0.13, showing the baseline
fungi-to-bacteria ratio when other variables are held constant. Total fungi (per 100) has a
small but statistically significant positive effect (95% CI: 0.04-0.05, p < 0.001), meaning as
total fungi increases, the fungi-to-bacteria ratio slightly increases. For soil depth, the 4-8
cm depth shows a positive effect (95% CI: 0.04-0.10, p < 0.001) compared to the 0-4 cm
depth, indicating slightly higher ratios at deeper depths. Collection year also significantly
impacts the ratio: compared to 2022, the ratio increased in 2023 (95% CI: 0.08-0.17, p <
0.001), but decreased in 2024 (95% CI: -0.12 to -0.05, p < 0.001). The adjusted R? value
of 0.34 indicates that about 34% of the variation in the fungi-to-bacteria ratio is explained

by this model, based on 796 observations.



5 Conclusion

The results of this study highlight that regenerative agriculture significantly enhances mi-
crobial biomass compared to conventional practices, with biomass consistently higher in
regenerative systems over time. However, a decline in total microbial biomass was observed
across the 2023 and 2024 collection years compared to 2022, indicating that other environ-
mental or systemic factors may be influencing microbial communities beyond the practices
themselves. These findings suggest that regenerative practices alone may not be suffi-
cient to fully counteract broader pressures, such as climate variability or soil management

practices, that could be impacting microbial populations.

This supports the research hypothesis that regenerative agriculture increases microbial
biomass over time, though the observed decline suggests additional factors may need to be
considered. Qutliers in the data point to the complexity of microbial biomass and highlight
the importance of considering other contributing factors when evaluating the effectiveness
of regenerative practices. This trend is consistent with studies such as Fenster et al. (2021),
which found that regenerative practices in almond production enhanced microbial biomass
and soil health, and Khangura et al. (2023), which suggested that practices like crop rota-

tion and reduced chemical use promote microbial diversity and soil health.

Soil depth plays a significant role in shaping the Fungi-to-Bacteria Ratio, with deeper soils
(4-8 c¢m) showing a higher ratio compared to shallower soils (0-4 cm). However, the trend
begins to level off by 2024, suggesting that other factors may be influencing microbial
communities over time. The presence of outliers further emphasizes the complexity of
microbial dynamics, highlighting the need for additional research into the factors driving

these changes. These observations are consistent with studies like Fenster et al. (2021),



which found that soil depth impacts microbial biomass and diversity, and Khangura et
al. (2023), which highlighted that soil management practices significantly affect microbial

communities.

The overall results align with broader literature indicating that regenerative agriculture
can improve soil health, microbial diversity, and ecosystem functioning. However, as the
research does not establish definitive causality, further studies are needed to investigate
the specific factors, such as soil type, climate, and crop rotations, that could influence
these results. Future research should also explore the role of additional soil factors, such as
organic matter, pH, moisture, and temperature, which directly impact microbial commu-
nities. These findings have practical implications for policy development, offering evidence
for the benefits of regenerative practices in sustainable agriculture, and could help guide
further research into their long-term effects across different environments and farming sys-

tems.
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7 Appendix

load(here: :here("data/PLFA_clean.Rdata"))

load(here: :here("CRARS clean.Rdata"))
# fig 1

linda_clean <- linda_clean %>’

mutate (logbiomass = log(total_living microbial_biomass))
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treat_biomass <- linda_clean %>/
select(treatment, logbiomass, collection_year) %>/

na.omit ()

treat_biomass %>

ggviolin(x = "treatment",

y = "logbiomass",

color = "treatment",

add = c("mean", "boxplot")) +
facet_wrap(~collection_year) +
scale_color_manual (values = c("blue", "red")) +
xlab("Treatment Type") +

ylab("Log-Transformed Biomass") + # Change the y-axis title here

ggtitle("Biomass Distribution by Treatment and Collection Year")

# fig 2
treat_biomass %>
group_by(collection_year, treatment) %>%
summarise(
mean = mean(logbiomass, na.rm = TRUE),
SD = sd(logbiomass, na.rm = TRUE)
) W>h

kable(caption = "Mean and Standard Deviation of Biomass by Collection Year and Treatm
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Table 3: Mean and Standard Deviation of Biomass by Collection Year and Treatment

collection_year treatment mean SD
2022 Regen 8.446976 0.4044310
2022 Conv 8.218864 0.5485161
2023 Regen 7.504302 0.5064431
2023 Conv 7.399912  0.6799865
2024 Regen 8.002866 0.7585431
2024 Conv 7.441762 0.7111841

# fig 3
bidepth %>
select(total_fungiper100, fungi_bacteria, depth, collection_year) %>%
na.omit() %>%
ggplot(aes(x = total_fungiper100, y = fungi_bacteria)) +
geom_smooth() +
geom_point() +
theme bw() +
facet_grid(collection_year ~ depth) +

labs(x = "Total Fungi", y = "Fungi to Bacteria Ratio")

# fig 4

model2 <- Im(fungi_bacteria ~ total_fungiper100 + depth + collection_year, data=bidepth

model2 |>
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tbl_regression(intercept=TRUE) |>

add_glance_table(include = c(adj.r.squared, nobs))

Characteristic Beta 95% CI! p-value

(Intercept) 0.13  0.08, 0.17  <0.001
total fungiperl00 0.04  0.04, 0.056  <0.001
depth

0-4 — —

4-8 0.07 0.04,0.10 <0.001

collection_ year

2022 — —
2023 0.12  0.08,0.17 <0.001
2024 -0.09 -0.12,-0.05 <0.001
Adjusted R? 0.340
No. Obs. 796

ICI = Confidence Interval
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